Team Members

Team leader - Kapil Gupta

Student members - Shan Lin, Jayesh Patel, Elena Zukauskas

Faculty Advisors - Dr. Joseph Stetter, Dr. William Penrose

UTLX Contact - Carl Hybinette
Union Tank Car Company

- UTLX provides railroad tank and covered hopper cars to companies for the shipment of their products
- Leases out ~50,000 tank cars
- Industry effort to eliminate Non-Accidental Releases (NARs).
Project Goal

- Detect small leaks while car is in transit using car-mounted sensors
- Alert the shipper of the leak from remote locations
Non-Accidental Releases

- NARs are small leaks occurring usually around the fitting assembly through:
 - gaskets on safety, loading and unloading valves
 - thermal wells
- The fitting assembly is housed
Project Distribution

Three major areas needed to be researched:

- Commodities shipped in pressurized tank cars
- Sensors that can be used to detect these commodities
- A telemetry device to report alarms to a remote site
Commodities Shipped and their Properties
Chemicals Shipped in Tank Cars

• According to BOE-6000-R over 100 chemicals may be transported in pressurized tank cars

• Examples of chemicals shipped:
 – Halogenated hydrocarbons such as Chloroethylene, Refrigerants.
 – Hydrocarbons such as LPG, ethylene.
 – Gases such as HCl, Chlorine, CO, etc.
Commodities’ Properties

- Gases at room temperature
- Boiling points between 0°C and 20°C
- 40% of chemicals that can be shipped have dangerous mixing concentration ranges with air
- 50% of these chemicals are flammable
- Majority are toxic
Commodities’ Properties

- Gas
- Flammable
- Explosive
- Toxic

Explosion lower limit < 3%
Physical Properties of Selected Commodities

<table>
<thead>
<tr>
<th>Materials</th>
<th>Physical State at RT</th>
<th>Explosive level in air</th>
<th>Vapor pressure</th>
<th>Vapor density</th>
<th>Flammability</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG (propane)</td>
<td>gas</td>
<td>upper 9.5% lower 2.1%</td>
<td>8.42 atm/21.1C 190 psi/37.7C</td>
<td>1.5</td>
<td>yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chloro-ethene</td>
<td>gas</td>
<td>upper 33% lower 3.6%</td>
<td>--</td>
<td>2.2</td>
<td>yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>gas/liquid (bp.10.7C)</td>
<td>upper 100% lower 3.0%</td>
<td>--</td>
<td>1.5</td>
<td>yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>gas</td>
<td>upper 74% lower 12.5%</td>
<td>--</td>
<td>0.97</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Sensor Selection
Three categories of chemical sensors

- Reactive Sensors
- Physical Property Sensors
- Sorption Sensors
Reactive Sensors

- **Electrochemical Sensor** - responds to gases that can be electrolytically reduced or oxidized on a metallic catalyst
- **Solid State Semiconductor Sensors** - consists of a bead of tin oxide around two fine coils of Pt wire
- **Combustible Gas Sensor** - gas combusts on surface of Pt wire and increases coil temperature
- **Chemiluminescence** - certain chemical reactions generate light which can be measured
Physical Property Sensors

- **Spectroscopic Sensors** - measures light absorption of a gas
- **Photoacoustic Sensors** - a short pulse of infrared light is passed through an absorbing gas and sudden expansion generates an acoustic wave
Sorption Sensors

- **Microbalances** - when a coated quartz crystal absorbs the gas, its change in vibrational frequency is measured.
- **Adsistor** - electrical resistance across a polymer containing carbon particles increases with absorbed gas.
Commodities which can be oxidized or reduced

Gases and vapors which include hydrocarbons which cannot be oxidized or reduced under normal conditions

Sensor Selection

Electrochemical Sensor

Adsistor Sensor
A chemical leak will cause a decrease in the concentration of oxygen in the air.
Adsistor Sensor

- Base is a non-conductive, resilient polymer
- Coated to make it sensitive to gas vapors
- Conductive particles embedded in the polymer
- Requires no power to operate
Adsistor Test Results

Resistance (kOhms) vs. time (t(sec))

- 16000 ppm
- 10000 ppm
- 4000 ppm

Graph shows the change in resistance over time for different concentrations.
Electrochemical Sensors

- Gas diffuses through a membrane and reacts at the electrolyte-catalyst surface
- This process creates a current which can be translated into gas concentration
CO Sensor Test Results
Oxygen Sensor Test Results

Graph showing the relationship between O2% and V (mV). The graph displays a linear decrease in V (mV) as O2% increases.
Telemetry
General Block Diagram

Tank Car

NARs

Detection By Sensors

Trigger Signal

Telemetry Device

Reporting To

Base Station (Shipper)
Wireless Data Communication
Choices

Wireless Application

Devices
Networks
Services
Tools
Device Types

• A wireless device usually consists of a computing unit together with a modem which enables it to send data by radio.

• Specific Device- Pager
• Multipurpose, Intelligent Device -Laptops
⭐ Dedicated Device such as Telemetry Device.

External Modem

Internal Modem

PCMCIA Card
The External Wireless Modems

Features of the series 500 Integrated wireless Modems:

- Easy, flexible integration
- Compact, Lightweight
- Efficient Power Management
- Status Send - Telemetry Feature
- Built in diagnostics.
The Advanced Telemetry Mode

- A bi-directional serial port using RS-232 signaling.
- Four programmable counter/alarms that can be self triggered, polled or reset remotely.
- An auto feature for the battery operated, infrequent alarm scenarios.

Series 500 Serial Modem
The Three Modes of Modem Communication

Status Send Mode
- Wireless Modem
- 4 status lines from sensors and triggers

Serial Mode
- Gas meter, vending machine, or any device with a serial port.
- Serial Data (unframed)
- 4 status lines from sensors and triggers

Native Mode
- Attached Device (DTE)
- Wireless Modem
 - NCL (framed)
The Wireless Network Support

- The Mobitex Network
- ARDIS Network
- RAM
- CPCD
- GSM etc...
Features Of ARDIS Network

• Operating for over 10 years.
• *Largest* Wireless data communication network in the U.S.
• Over 40,000 subscribers including- AT&T, Sears, Pitney Bowes, IBM, AVIS, Lanier, Lucent, Otis Elevators etc..
• *Coverage* in over 400 metropolitan areas and 10,700 cities and towns.
Coverage Of ARDIS Network
Significant Features Of ARDIS Networks

- Data is segmented into 240 or 512 bytes packets.
- Error Checking and correction features.
- Allows multiple devices to communicate with the network.
- Charged for data actually passed and not for the time connected.
- Most optimal for transmission of small amounts of data.
Team Conclusions

- Use of Adsistor along with the O_2 and CO electrochemical sensors
- Use of Series 500 Modem (SD505) along with ARDIS network support
- Final report sets groundwork for testing and development of a prototype device
- Visit our website at www.iit.edu/~ipro013
Tasks for Future Developers

- Further testing of sensors with varying parameters
- Testing sensors in an environment similar to valve housing on tank cars (rapid air flow)
- Design and testing of the telemetry device
- Cost estimation
Acknowledgements

Special thanks to:

• Union Tank Car Company
• Dr. Joseph Stetter
• Dr. William Penrose
• Dr. Tom Wong
• Dr. Lina G. Kwong