METAL CLADDING PROCESS AND PRODUCTS
RESULTING THEREFROM

William Rostoker and Robert E. Domangala, Chicago, Ill.,
assignors to Armour Research Foundation of Illinois
Institute of Technology, Chicago, Ill., a not-for-profit
corporation of Illinois

No. 647,973, now Patent No. 2,985,955, dated May
30, 1961. Divided and this application Mar. 24, 1961,
Ser. No. 98,086.

2 Claims. (Cl. 29—194)

This invention relates to a cladding of one metal with another and to the products resulting from
such method and more particularly the instant invention relates to a cladding method in which an intermediate
metal is, or intermediate metals are, interposed between the base metal and the cladding metal, such an
interposed material acting as a diffusion barrier to eliminate the
formation of brittle and continuous intermetallic compo-
unds between the base and the cladding metal.

This application is a divisional application of Serial
2,985,955.

An object of the instant invention is to provide a
method whereby hitherto impossible permanent metal
cladding may be performed, the end product of such
cladding procedure being extremely stable and not sub-
ject to separation during forming operation or in service.

Another object of the instant invention is to provide a
metal cladding process whereby the clad metal will be
strongly adherent to the base metal and where the forma-
tion of continuous and brittle intermetallic compounds
of the base metal and clad metal does not occur.

A further object of the instant invention is to provide a
method of cladding one metal with another in a perma-
nently bound union.

Still another object of the instant invention is to pre-
vent the formation of continuous and brittle intermetallic
compounds between the base metal and the clad metal.

A specific object of the instant invention is to provide a
method whereby steel may be clad with titanium through the interposition of a vanadium diffusion barrier between
said metals.

Other objects, features and advantages of the instant
invention will become apparent to those skilled in this art
from the following disclosures thereof.

Many attempts have been made to clad one metal
with another with varying degrees of success. Such proc-
esses and end products have assumed a greater impor-
tance in present day technology with the existence of
extremely severe operating conditions. It has become
desirable to combine the cheapness of base metals such
as steel with highly corrosion resistant but expensive
metals, for example, titanium, in order to be able to
utilize the advantages of each. In some cases cost is not
the important factor, for two expensive metals may be
united—without the beneficial attributes of each of the
finished product. It is well-known in the art and we have
found in our experiments that in many cases it is im-
possible to form durable clads, particularly when the
metals are used or treated under high temperature con-
ditions and when continuous and brittle intermetallic compunds of the two metals are formed.

It is known that titanium has excellent corrosion re-
sistance in sea water and various chemical environments.
Unfortunately, the high cost of the metal precludes its
use in many potential applications. By the use of the
instant invention titanium may be clad onto steel and
the ratio of titanium to steel is quite small. Thus, steel
is the load sustaining member, while the corrosion resis-
tance of titanium is fully utilized.

When the attempt is made to clad for example titanium
onto steel, although the titanium will adhere at low
 temperatures, this is not the case after annealing and
subsequent circumstances where the cladding is subjected to
stress, as for example, by bending or other fabrication
procedures. At high temperatures, or under physical
stress, the titanium will separate from the steel and re-
sult in the destruction of the usefulness of the clad. Once
the titanium and iron have separated, not only may the
structural element of which they are a part be vitally im-
paired, but also the steel is no longer afforded the pro-
tection of the titanium and becomes subject to corrosive
influences and the like.

This problem of separation of the clad metal from the
base metal is not limited to the titanium and steel system,
but as we and others have found, may occur in practically
every case in which the two metals form continuous and
brittle intermetallic compounds at their interface. As the
intermetallic compounds are formed, embrittlement of the
joint or weld occurs.

The instant invention may be utilized in all cladding
systems where continuous and brittle intermetallic compo-
unds are normally formed at the interface of two metals.
The basic concept underlying our invention is the fact that a third metal may be interposed between
two other metals to firmly clad these two other metals
if the intermediate metal does not form continuous and
brittle intermetallic compounds with either the clad or
the base metal. Using the titanium-steel example, once
more we see the following: at room temperature stressed
titanium clad steel is stable and will not separate,
form intermetallic compounds, or become brittle.
However, as the temperature of the bimetal is increased the intermetallics form by diffusion a continuous inter-
vening layer with subsequent embrittlement. If a thin
sheet of vanadium is inserted between the titanium and
steel then the tri-layered mass heated and compressed
to form the finished products, the material will be
extremely stable at elevated temperatures and there is
no harmful formation of intermetallic compounds with
the consequence involved therein. This phenomenon is
explained by the fact that vanadium does not form con-
 tinuous brittle intermetallic layers with either titanium or
iron and therefore acts as a diffusion barrier between the
two metals. The utilization of a diffusion barrier metal is
novel and the teachings of the instant invention make it
readily used in a broad variety of cladding materials.

Since the use of a diffusion barrier metal as a preventa-
of harmful intermetallic compound formation is basically
the heart of the instant invention, we feel it necessary to
elaborate upon the principle which determines the correct
material to use. The most important limitation, of course,
is that the interposed material be unable to form con-
tinuous and brittle intermetallic compounds with either
the base or the cladding metal. If this formation is not
possible the result will be no embrittlement and no separa-
tion of the metals during subsequent forming or in service.

To illustrate, let us assume that we wish to clad metal
A with metal C and that the harmful intermetallic com-
 pound A2C may be produced. Let us now interpose
metal B between A and C, and heat and press or roll
the mass together to form a clad material. In this case
metal B bonds with both metal A and metal C and the
interfaces present stably welded structures.

A great deal of the work which led to the instant
invention was concerned with the cladding of steel with
titanium. We found that the mere use of these two
metals, while stable at room temperature, became prac-
tically useless at an elevated temperature or after annealing. We found continuous intermetallic compound formation and embrittlement at the interface of what was once, at least to all outward appearances, a durable joint. We then interposed a thin sheet of vanadium between the two, formed it in the exact same way that the titanium-steel combination per se was formed and then found that an extremely stable material resulted. This material did not separate on bending or become brittle at elevated temperatures.

Pure metals each have their own intrinsic crystal structure and physical properties. The simplest alloys are microscopically fine mixtures of the pure metals or solid solutions thereof. It frequently happens that the alloy of two pure metals at some simple ratio of atomic concentrations contains neither of the pure metals in their free form. The alloy has a new crystal structure unlike either of the parent metals, has quite different physical properties and is almost invariably brittle and is called an intermetallic compound or an intermediate phase.

If one examines all of the possible alloys in a simple alloy system, the sequence of structures with increasing alloy may be:

(a) pure metal A
(b) a solid solution range of B in A
(c) a mixture of solid solution A with compound A₉B₃
(x, y are integers)
(d) pure intermetallic compound A₉B₃
(e) a mixture of A₉B₃ with solid solution B
(f) a solid solution range of A in B
(g) pure metal B.

We have found that many other systems are well adapted to this method of cladding. Some of these systems are as follows:

<table>
<thead>
<tr>
<th>Clad Metal</th>
<th>Diffusion Barrier Metal</th>
<th>Base Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr</td>
<td>Ti + V</td>
<td>Fe</td>
</tr>
<tr>
<td>Zr</td>
<td>Ti</td>
<td>Fe</td>
</tr>
<tr>
<td>Mo</td>
<td>Cu</td>
<td>Fe</td>
</tr>
<tr>
<td>Three</td>
<td>Mg</td>
<td>Be</td>
</tr>
<tr>
<td>Ti</td>
<td>V + Cu</td>
<td>Ni</td>
</tr>
<tr>
<td>Ti</td>
<td>V + Cu</td>
<td>Fe</td>
</tr>
<tr>
<td>Ti</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>Ti</td>
<td>Be + Mg</td>
<td>Fe</td>
</tr>
<tr>
<td>Ti</td>
<td>Ag</td>
<td>Cu</td>
</tr>
</tbody>
</table>

It should be understood that the terms “Clad Metal” and “Base Metal” used in the above chart may be interchanged, depending upon which metal is considered the clad. Thus, for example, if it were necessary to use zirconium as the base metal, iron could be clad thereon by the interposition of a layer of titanium and a layer of vanadium therebetween.

A diffusion barrier consisting of two or even more metals should be next considered. Such a quadrapartite cladding system must be used when a single known interposed metal which forms harmful intermetallics with neither the base nor the clad cannot be avoided. Consider the example of aluminum-beryllium-magnesium-iron in either cladding aluminum to iron or vice versa. Aluminum forms intermetallics with iron with the end result that these materials will separate when heated and bent. If beryllium alone is interposed between the aluminum and iron, the clad will also fail, failure occurring at the beryllium-iron interface since these two metals form intermetallics. The aluminum-beryllium interface will remain stably united since these metals do not form intermetallics. The problem thus is one of using the correct metal between the beryllium and iron layers, by correct, of course, is meant one not forming harmful intermetallics with either. Magnesium admirably fulfills these requirements. It is seen that not only must the proper metal be selected, but its correct positioning in the system must be maintained. In the example given above, if the position of the magnesium and beryllium were reversed, the end product, say of aluminum-clad iron would not have the desirable properties afforded by the instant invention.

As above stated, it is quite feasible to clad steel with titanium by interposing a thin sheet of vanadium between the two metals. We have also found that the system comprising: titanium-vanadium-copper-steel is also conveniently used for this desirable end product. The various interfaces of titanium-vanadium, vanadium-copper, and copper-iron do not give rise to any intermetallic compounds.

A roll clad operation is normally performed by laying a slab of one metal on top of the other. Such composite is usually first welded around the edges to prevent relative movement and to exclude air and then the unit is hot rolled using very large reductions per pass. This results in the development of a pressure weld between the two metals. The pressure weld must be of sufficient strength to tolerate bending of the clad without separation. If this simple rolling operation is performed on a composite titanium and steel unit, it is possible to combine the two metals. However, the result and clad, after annealing, cannot tolerate bending operations such as are needed to fabricate the clad into some useful form. Continuous brittle intermetallic compounds form at the interface through interdiffusion to negate the sought desirable end product.

In order that our process may be fully understood, the following detailed example is presented:

Example I

Titanium sheet and steel sheet, 0.125 and 3/8 inch thick respectively were selected as the cladding and clad materials. The relative thickness of the starting materials will be the same in the finished product. Ductile vanadium sheet of practically any thickness is interposed between the titanium-steel interface. Thickness of 0.025 and 0.050 inch have been successfully utilized. The steel may be either the plain carbon or the stainless variety. The initial "sandwich" assembly must preclude the admission of air during rolling, for both vanadium and titanium are quite reactive with various components of air at the rolling temperature. This exclusion is more conveniently accomplished by welding the vanadium to the titanium and the vanadium to the steel, being careful not to form a titanium-steel fusion bond. Another air exclusion method is to form a cavity in the steel for the insertion of the vanadium and titanium covering with a steel plate and welding shut. After the sandwich is formed, hot rolling is performed in the usual manner. Rolling is performed at a temperature range from about 750° to 1000° centigrade. The thickness reduction per rolling pass seems to be no consequence. Experiments were run where reductions of 0.025 and 0.100 inch per pass yielded clads of similar quality. The minimum reduction for bonding seems to be about 60%, although the quality of the clad may not be very good until a reduction of be near 80% has been accomplished. Even greater reductions (80–95%) have provided better clads.

The above example introduces a diffusion barrier which prevents the formation of damaging brittle intermetallic compounds. However, due to the carbon content of the steel, there is apparently some formation of discontinuous complex carbides. This carbide formation does not seriously affect the bend ductility of the clad or the stability of the interface union. We have found that it is possible to prevent the formation even of these carbides by the use of a second intervening layer, such layer being of pure copper. The fabrication of such a four-tiered clad is the same as that for the tripartite material discussed above. The copper sheet is interposed between the steel and vanadium of Example I. Copper
sheet 0.007 inch thick was employed, it of course being understood that here again varying thickness may be utilized.

It will be understood that modifications and variations may be effected without departing from the spirit and scope of the instant invention.

We claim as our invention:

1. Titanium clad steel having interposed between the said titanium and the said steel a diffusion barrier to prevent the formation of intermetallic compounds of the titanium and steel, said diffusion barrier being a layer of vanadium and a layer of copper, said vanadium layer positioned between the titanium and the iron, and the said copper layer being positioned between the vanadium and steel layers, the interfaces of all of said metallic constituents being metallurgically bonded one to the other.

References Cited in the file of this patent

UNITED STATES PATENTS

2,813,332 Keay --------------------- Nov. 19, 1957
2,908,966 Wagner ------------------ Oct. 20, 1959